Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhao-Di Liu ${ }^{\text {a, }{ }^{,} *}$ and Hai-Liang Zhu ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail:
hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.046$
$w R$ factor $=0.129$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Printed in Great Britain - all rights reserved

(μ-Biphenyl-4,4'-dicarboxylato)bis[(2-aminopyridine)silver(I)]

The title compound, $\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$, is a dinuclear Ag^{I} complex which has crystallographic inversion symmetry. Each Ag atom is three-coordinated by two N atoms from two 2-aminopyridine ligands and by one O atom from a biphenyl-4,4'-dicarboxylate ligand, giving a Y-shaped coordination environment. Two Ag^{I} atoms are linked through a biphenyl4,4 4^{\prime}-dicarboxylate ligand, acting as a bridge, forming a dimeric complex. The separation between the two silver(I) centres is 15.879 (3) Å. In the crystal structure, molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming molecular tapes in the a-axis direction.

Comment

Metal complexes of pyridine and its derivatives are of much current interest in coordination chemistry. Indeed, many monomers, dimers and polymers have been prepared and structurally determined. Recently, we have reported two dimeric silver(I) complexes with 2 -aminopyridine and different counter-anions, viz. bis ($\mu-2$-aminopyridine) bis[(trifluoroacetato)silver(I)], (II) (You \& Zhu, 2004), and bis(μ -4-chlorobenzoato- $\left.\kappa^{2} \mathrm{O}: \mathrm{O}\right)$ bis $[(2$-aminopyridine $-\kappa \mathrm{N})$ silver(I)], (III) (Zhu et al., 2004). In order to discover how the counteranions affect the construction of silver(I) coordination dimers with 2-aminopyridine, we report here the crystal structure of the title dimeric silver(I) complex, (I).

(I)

In (I), each Ag atom is three-coordinated by two N atoms from two 2-aminopyridine ligands and by one O atom from a biphenyl-4, 4^{\prime}-dicarboxylate ligand, giving a Y-shaped coordination environment (Table 1), the biphenyl-4, 4^{\prime}-dicarboxylate ligand acting as a bridge, forming a dimeric complex (Fig. 1). The complex has crystallographic inversion symmetry. The $\mathrm{Ag}-\mathrm{N}$ bond lengths [2.214 (3) and 2.253 (3) \AA] are comparable with those in (II) $[2.137$ (4) \AA] and (III) [2.269 (3) \AA]. The structure of (I) is linear and very different from that of

Received 13 October 2004 Accepted 8 November 2004 Online 20 November 2004
(II) and (III). In (II) and (III), the Ag^{I} atoms are linked through coordinated atoms, forming four-membered and eight-membered rings, respectively. The differences between the complexes is probably caused by the presence of different counter-anions. We infer that, in order to give three-coordinated silver (I), a bridging ligand is required that can not chelate.

The separation between the two silver(I) centres is 15.879 (3) \AA. In the crystal structure, the molecules are connected through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form tapes in the a-axis direction (Fig. 2).

Experimental

$\mathrm{Ag}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 116 \mathrm{mg})$ and biphenyl-4,4'-dicarboxylic acid ($1 \mathrm{mmol}, 242 \mathrm{mg}$) were dissolved in a 30% aqueous ammonia solution $(10 \mathrm{ml})$, and the resulting solution was stirred for ca 30 min until a clear solution was obtained. A solution of 2-aminopyridine (1 mmol , 94 mg) in acetonitrile (2 ml) was added to the above solution. The resulting solution was kept in air for 10 d with ammonia gas escaping. Colourless crystals of (I) were collected and washed with water, and then dried in a vacuum desiccator over CaCl_{2} (yield 61%). Analysis calculated for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{Ag}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$: C 49.31, H 3.82, N 13.40%; found: C 49.06, H 3.87, N 13.46\%.

Crystal data

$\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$	$D_{x}=1.690 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=832.42$
Monoclinic, $P 2_{1} / n$	Cell parameters from 3559
$a=5.9220(8) \AA$	reflections
$b=24.946(3) \AA$	$\theta=4.6-28.4^{\circ}$
$c=11.1751(14) \AA$	$\mu=1.25 \mathrm{~mm}^{-1}$
$\beta=97.761(2)^{\circ}$	$T=298(2) \mathrm{K}$
$V=1635.8(4) \AA^{3}$	Block, colourless
$Z=2$	$0.12 \times 0.10 \times 0.08 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	3559 independent reflections
\quad diffractometer	2834 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.021$
Absorption correction: multi-scan	$\theta_{\max }=27.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-6 \rightarrow 7$
$\quad T_{\text {min }}=0.865, T_{\max }=0.907$	$k=-31 \rightarrow 19$
9103 measured reflections	$l=-14 \rightarrow 13$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0644 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$	$\quad+1.6038 P]$
$w R\left(F^{2}\right)=0.129$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.03$	$(\Delta / \sigma)_{\max }=0.001$
3559 reflections	$\Delta \rho_{\max }=0.80 \mathrm{e} \AA \AA^{-3}$
236 parameters	$\Delta \rho_{\min }=-0.35 \mathrm{e} \AA^{-3}$
H-atom parameters constrained	

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{Ag} 1-\mathrm{N} 3$	$2.214(3)$	$\mathrm{Ag} 1-\mathrm{O} 1$	$2.419(12)$
$\mathrm{Ag} 1-\mathrm{N} 1$	$2.253(3)$		
$\mathrm{N} 3-\mathrm{Ag} 1-\mathrm{N} 1$	$135.77(13)$	$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 1$	$100.4(3)$
$\mathrm{N} 3-\mathrm{Ag} 1-\mathrm{O} 1$	$123.5(3)$		

Figure 1
View of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The minor disorder component is shown with open bonds. Unlabelled atoms are related by the symmetry code ($1-x$, $-y,-z$).

Figure 2
The crystal packing of (I), showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions as dashed lines. The minor component of disorder has been omitted. Colour codes: green Ag , red O , blue N and black C .

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	2.14	$2.948(12)$	157
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.27	$2.880(6)$	127
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2$	0.86	2.24	$2.968(11)$	142
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.47	$2.907(7)$	112

Symmetry codes: (i) $1+x, y, z$; (ii) $x-1, y, z$.

Atoms O 1 and O 2 are disordered over two positions ($\mathrm{O} 1 / \mathrm{O}^{\prime}$ and $\mathrm{O} 2 / \mathrm{O}^{\prime}$) with occupancies of 0.69 (2):0.31 (2). This corresponds to rotational disorder about the $\mathrm{C} 1-\mathrm{C} 7$ bond. Geometric details of only the major component of disorder are included in Tables 1 and 2. All H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$) and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}$ and N$)$

metal-organic papers

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank the Education Office of Fuyang Province, People's Republic China, for research grant No. 2004kj300zd.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
You, Z.-L. \& Zhu, H.-L. (2004). Acta Cryst. C60, m517-519.
Zhu, H.-L., Qiu, X.-Y., Yang, S., Shao, S.-C., Ma, J.-L. \& Sun, L. (2004). Acta Cryst. C60, m170-171.

